The Fundamental Concepts of Vectors

By
Dr. Mohammed F. Al-Mudhaffer
Department of Physics-College of Education for Pure Science 2020-2021

Outlines:

1.1 A Scalar and Vector Quantities

1.2 Vector Algebra

1.3 Scalar Product
1.4 The Vector Product

1.1 A Scalar and Vector Quantities

- Has both magnitude only
- Independent of any coordinates
- Such as Density, energy and temperature

Vector

- Has both magnitude and direction.
- Dependent of any coordinates
- Obeys the parallelogram rules.
- Such as Force , displacement

1.2 Vector Algebra

Figure 1.1: A vector A and its components in Cartesian coordinates.

1.2.1 Equality of Vectors

1.2.2 Vector Addition

$$
\begin{aligned}
& A+B=(A x ; A y ; A z)+(B x ; B y ; B z) \\
& A+B=(A x+B x)+(A y+B y)+(A z+B z)
\end{aligned}
$$

1.2.3 Multiplication by a Scalar

If c is a scalar and A is a vector, then:

$$
c A=c(A x+A y+A z)=c A x+c A y+c A z=A c
$$

1.2.4 Vectors Subtraction

$$
A-B=(A x-B x)+(A y-B y)+(A z-B z)
$$

1.2.6 The Commutative Law of Addition

This law holds for vectors; that is,

$$
A+B=B+A
$$

Because $A_{x}+B_{x}=B_{x}+A_{x}$ and similarly for the y and z components.

1.2.7 The Associative Law

$$
\begin{aligned}
A+(B+C) & =\left(A_{x}+\left(B_{x}+C_{x}\right), A_{y}+\left(B_{y}+C_{y}\right), A_{z}+\left(B_{z}+C_{z}\right)\right) \\
& =\left(\left(A_{x}+B_{x}\right)+C_{x},\left(A_{x}+B_{x}\right)+C_{x},\left(A_{x}+B_{x}\right)+C_{x}\right) \\
& =(A+B)+C
\end{aligned}
$$

1.2.8 The Distributive Law

$$
\begin{aligned}
c(A+B) & =c(A x+B x ; A y+B y ; A z+B z) \\
& =c(A x+B x) ; c(A y+B y) ; c(A z+B z) \\
& =c A+c B
\end{aligned}
$$

1.2.9 Magnitude of a Vector

$$
A=|A|=\left(A^{2} x+A^{2} y+A^{2} z\right)^{(1 / 2)}
$$

1.2.10 Unit Coordinate Vectors

So , the any vector can be written as following:
$A=e_{x} A_{x}+e_{y} A_{y}+e_{z} A_{z}$

Example

A helicopter flies 100 m vertically upward, then 500 m horizontally east, then 1000 m horizontally north. How far is it from a second helicopter that started from the same point and flew 200 m upward, 100 m west, and 500 m north?

Solution:

Choosing up, east, and north as basis directions, the final position of the first helicopter is expressed vertically as $A=(100,500,1000)$ and the second as $B=(200,-100,500)$, in meters. Hence, the distance between the final positions is given by the expression

$$
|A-B|=((100-200) ;(500+100) ;(1000-500))=787.4 m
$$

1.3 Scalar Product

Given two vectors A and B, the scalar product or "dot" product, $A . B$, is the scalar defined by the equation

$$
\mathrm{A} \cdot \mathrm{~B}=\mathrm{AxBx}+\mathrm{AyBy}+\mathrm{AzBz}
$$

> From the above dentition,
> 1-Scalar multiplication is commutative(A.B=B.A)
> 2-It is also distributive ($\mathrm{A} .(\mathrm{B}+\mathrm{C})=\mathrm{A} . \mathrm{B}+\mathrm{A} . \mathrm{C})$

1.3 Scalar Product

Figure 1.5: Evaluating a dot product between two vectors.

$$
\begin{array}{r}
A \cdot B=|A||B| \cos \theta \\
\cos \theta=\frac{A \cdot B}{A B} \Rightarrow \theta=\cos ^{-1} \frac{A \cdot B}{A B} \tag{1.15}
\end{array}
$$

Note: If A. B is equal to zero and neither A nor B is null, then cos is zero and A is perpendicular to B.)

$$
\mathrm{A}^{2}=\left|\mathrm{A}^{2}\right|=\mathrm{A} \cdot \mathrm{~A}
$$

1.3 Scalar Product

From the definitions of the unit coordinate vectors i, j, and k , it is clear that the following relations hold
i.i $=j . j=k . k=1$
$i . j=i . k=j . k=0$
In addition, we can write any vector associated with its unit vectors by this form:

$$
A=i A_{x}+j A_{y}+k A_{z}
$$

Example 1.3.2 Law of Cosines: Consider the triangle whose sides are A, B, and C, as shown in Figure 1.6. Then $C=A+B$. Take the dot product of C with itself,

Figure 1.7: The law of cosines

$$
\begin{aligned}
C \cdot C & =(A+B)(A+B) \\
& =A \cdot A+2 A \cdot B+B \cdot B
\end{aligned}
$$

By Replacing A. B with $A B$ cos 0 to obtain which is the familiar law of cosines.
$C^{2}=A^{2}+2 A B \cos \Phi+B^{2}$

1.3 Scalar Product

Example 1.3.1: Suppose that an object under the action of a constant force undergoes a linear displacement. By definition, the work AW done by the force is given by the product of the component of the force F in the direction of multiplied by the magnitude of the displacement; that is,
where is the angle between F and 4 s As. But the expression on the right is just the dot product of F and As, that is,

1.4 The Vector Product

Given two vectors A and B, the vector product or cross product, $A \times B$, is defined as the vector whose components are given by the equation

$$
\begin{align*}
& \qquad A \times B=\left|\begin{array}{lll}
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| \tag{1.23}\\
& A \times B=\left(A_{y} B_{z}-A_{z} B_{y}, A_{z} B_{\mathrm{x}}-A_{x} B_{z}, A_{x} B_{y}-A_{y} B_{x}\right) \tag{1.24}\\
& \text { and } \\
& \begin{array}{l}
(A \times B)=-(B \times A) \\
A \times(B+C)=A \times B+A \times C \\
n(A \times B)=(n A) \times B=A \times(n B)
\end{array} \tag{1.25}
\end{align*}
$$

1.4 The Vector Product

According to the definitions of the unit coordinate vectors (Section 1.3), it follows that

$$
\begin{array}{r}
i \times i=j \times j=k \times k=0 \\
j \times k=i=-k \times j \tag{1.28}\\
i \times j=k=-j \times i \\
k \times i=j=-i \times k
\end{array}
$$

These latter three relations define a right-handed triad. For example, $i \times j=$ $(0-0,0-0,1-0)=(0,0,1)=k$

In general, the cross product expressed in ijk form is

$$
\begin{equation*}
A \times B=\left(A_{y} B_{z}-A_{z} B_{y}, A_{x} B_{z}-A_{z} B_{x}, A_{x} B_{y}-A_{y} B_{x}\right) \tag{1.29}
\end{equation*}
$$

Each term in parentheses is equal to a determinant,

$$
A \times B=i\left|\begin{array}{ll}
A_{y} & A_{z} \tag{1.30}\\
B_{y} & B_{z}
\end{array}\right|+j\left|\begin{array}{ll}
A_{z} & A_{x} \\
B_{z} & B_{x}
\end{array}\right|+k\left|\begin{array}{ll}
A_{x} & A_{y} \\
B_{x} & B_{y}
\end{array}\right|
$$

1.4 The Vector Product

and finally

$$
\begin{gather*}
A \times B=\left|\begin{array}{ccc}
i & j & k \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| \tag{1.31}\\
A \times B=A B \sin \theta \tag{1.32}
\end{gather*}
$$

Figure 1.8: The cross product of two vectors.

